

Before starting on this guide, you should have a non-root user configured on your server. This
user needs to have sudo privileges so that it can perform administrative functions. To learn how
to set this up, follow this initial server setup guide.

Deploying Python Flask: the
example of IEO CTD Checker
In this guide, we will be setting up IEO CTD Checker, a Python
application using the Flask micro-framework on Ubuntu 16.04. The
bulk of this article will be about how to set up the Gunicorn
application server to launch the application and Nginx to act as a
front-end reverse proxy. The systemd will allow Ubuntu’s init system
to automatically start everything whenever the server boots.

Prerequisites

Install the components

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-16-04
http://ctdcheck.ieo.es/
https://www.palletsprojects.com/p/flask/
https://gunicorn.org/
https://www.nginx.com/
https://en.wikipedia.org/wiki/Systemd

Miniconda is a free minimal installer for conda. It is a small, bootstrap version of Anaconda that
includes only conda, Python, the packages they depend on, and a small number of other useful
packages, including pip, zlib and a few others.

In our case, Miniconda Linux 64-bits was selected (Python version 3.7). To know more about your
operating system type in your command window uname -a

With conda, we can create, export, list, remove, and update environments that have different
versions of Python and/or packages installed in them. In our case, we use it to isolate our Flask
application from the other Python files on the system.

To create an environment with a specific version of Python:

Here, env_ctdcheck is the name chosen for our virtual environment. When conda asks you to
proceed, type y. This creates the env_ctdcheck environment in /envs/.

Verify that the new environment was installed correctly:

Install Conda

Install nginx

sudo apt-get updatesudo apt-get install nginx

NOTE: In an initial stage of this project, the preinstalled version of Python was used in
combination with pip and virtualenv. However, a problem with the Python Cartopy library
was found. By installing conda, all problems dissapeared.

Create a virtual environment

conda create --name env_ctdcheck python=3.7

https://scitools.org.uk/cartopy/docs/latest/

To activate the environment:

Your prompt will change to indicate that you are now operating within the virtual environment. It
will look something like this (env_ctdcheck) user @ host :~/ ctdcheck $.

To deactivate the environment:

If you want to eliminate the environment:

Install all the components after activate the environment:

To save all dependencies to a file text:

conda env export > environment.yml

In case you want create the environment from the environment.yml (for example, to recreate in
other computer):

conda info --envs

conda activate env_ctdcheck

conda deactivate env_ctdcheck

conda env remove --name env_ctdcheck

conda install flask pandas_flavor matplotlib cartopy lxml pillow fpdf

Install all the programs that you want in this environment at the same time to avoid
conflicts.

conda env create -f environment.yml

After that, activate the new environment (the first line of the yml file sets the new environment's
name) and verify that the new environment was installed correctly.

It's time to create a simply Python Flask application that we'll call app.py : and we'll locate the file
inside a directory call ctdcheck
(env_ctdcheck) $ vi ~/ctdcheck/app.py

Within this file, we’ll place our application code. Basically, we need to import flask and instantiate
a Flask object. We can use this to define the functions that should be run when a specific route is
requested:

We test the app by typing:
(env_ctdcheck) $ python app.py

The app should be accesible through the browser: http://localhost:5000 or http://127.0.0.1:5000
You should see something like this:

When you are finished, hit CTRL-C in your terminal window a few times to stop the Flask
development server.

Create a simple Python Flask app

from flask import Flask

app = Flask(__name__)

@app.route("/")

	def hello():

 return "<h1 style='color:blue'>Hello There!</h1>"

if __name__ == "__main__": app.run(host='0.0.0.0')

If the port is not accesible try to open up it: (env_ctdcheck) $ sudo ufw allow 5000

Next, we’ll create a file that will serve as the entry point for our application. This will tell our
Gunicorn server how to interact with the application.

We will call the file wsgi.py :

(env_ctdcheck) $ vi ~/ ctdcheck /wsgi.py

The file is incredibly simple, we can simply import the Flask instance from our application and
then run it:

Save and close the file when you are finished.

Before moving on, we should check that Gunicorn is up and running correctly.

We can do this by simply passing it the name of our entry point. This is constructed by the name
of the module (minus the .py extension, as usual) plus the name of the callable within the
application. In our case, this would be wsgi:app .

We’ll also specify the interface and port to bind to so that it will be started on a publicly available
interface:

(env_ctdcheck) $ cd ~/ ctdcheck

(env_ctdcheck) $ gunicorn --bind 0.0.0.0:5000 wsgi:app

New versions of Flask may run in a different way. Check:
https://flask.palletsprojects.com/en/1.1.x/quickstart/#a-minimal-application

Create the WSGI entry point

from myproject import app

if __name__ == "__main__": app.run()

Testing Gunicorn

https://flask.palletsprojects.com/en/1.1.x/quickstart/#a-minimal-application

Visit your server’s domain name or IP address with :5000 appended to the end in your web
browser again:

http:// server_domain_or_IP

:5000

You should see your application’s output again. We’re now done with our virtual environment, so
we can deactivate it: conda deactivate env_ctdcheck Any Python commands will now use the
system’s Python environment again.

The next piece we need to take care of is the systemd service unit file. Creating a systemd unit
file will allow Ubuntu’s init system to automatically start Gunicorn and serve our Flask application
whenever the server boots. To begin, create a unit file ending in .service within the
/etc/systemd/system directory:

The file content:

We start with the [Unit] section, which is used to specify metadata and dependencies. We’ll put

Create a systemd unit file

sudo vi /etc/systemd/system/ctdcheck.service

[Unit]

Description=uWSGI instance to serve myproject

After=network.target

[Service]

User=myuser

Group=www-dataWorkingDirectory=/home/myuser/ctdcheck

Environment="PATH=/home/myuser/miniconda3/envs/env_ctdcheck/bin"

ExecStart=/home/myuser/miniconda3/envs/env_ctdcheck/bin/gunicorn --timeout 300 --bind

unix:myproject.sock -m 007 wsgi:app

[Install]WantedBy=multi-user.target

a description of our service here and tell the init system to only start this after the networking
target has been reached.

Next, we’ll open up the [Service] section. We’ll specify the user and group that we want the
process to run under. We will give our regular user account ownership of the process since it
owns all of the relevant files. We’ll give group ownership to the www-data group so that Nginx can
communicate easily with the Gunicorn processes. We’ll then map out the working directory so
that the init system knows where our the executables for the process are located (within our
virtual environment). We’ll then specify the commanded to start the service. Systemd requires
that we give the full path to the Gunicorn executable, which is installed within our virtual
environment. We will tell it to start 3 worker processes (adjust this as necessary). We will also tell
it to create and bind to a Unix socket file within our project directory called myproject .sock . We’ll
set a umask value of 007 so that the socket file is created giving access to the owner and group,
while restricting other access. Finally, we need to pass in the WSGI entry point file name and the
Python callable within. In our specific case, a timeout of 300s was set-up to allow upload of
multiple files.

Finally, we’ll add an [Install] section. This will tell systemd what to link this service to if we enable
it to start at boot. We want this service to start when the regular multi-user system is up and
running.

With that, our systemd service file is complete. Save and close it now. We can now start the
Gunicorn service we created and enable it so that it starts at boot:

If we want to stop the service just type:

Our Gunicorn application server should now be up and running, waiting for requests on the
socket file in the project directory. We need to configure Nginx to pass web requests to that
socket by making some small additions to its configuration file.

Begin by creating a new server block configuration file in Nginx’s sites-available directory. We’ll

sudo systemctl start myprojectsudo systemctl enable myproject

sudo systemctl stop myproject

Configuring Nginx to Proxy
Requests

simply call this ctdcheck to keep in line with the rest of the guide:
sudo vi /etc/nginx/sites-available/ ctdcheck

Open up a server block and tell Nginx to listen on the default port 80. We also need to tell it to
use this block for requests for our server’s domain name or IP address:

/etc/nginx/sites-available/ctdcheck

The only other thing that we need to add is a location block that matches every request. Within
this block, we’ll include the proxy_params file that specifies some general proxying parameters
that need to be set. We’ll then pass the requests to the socket we defined using the proxy_pass
directive:

/etc/nginx/sites-available/ctdcheck

That’s actually all we need to serve our application. Save and close the file when you’re finished.
To enable the Nginx server block configuration we’ve just created, link the file to the
sites-enabled directory:

With the file in that directory, we can test for syntax errors by typing: sudo nginx -t

server {

 listen 80;

 listen [::]:80;

 ctdcheck.ieo.es www.ctdcheck.ieo.es;

}

server {

 listen 80;

 listen [::]:80;

 server_name ctdcheck.ieo.es www.ctdcheck.ieo.es;

 location / {

 include proxy_params; proxy_pass

http://unix:/home/myuser/ctdcheck/myproject.sock;

 }

}

sudo ln -s /etc/nginx/sites-available/myproject /etc/nginx/sites-enabled

If this returns without indicating any issues, we can restart the Nginx process to read the our new
config: sudo systemctl restart nginx

The last thing we need to do is adjust our firewall again. We no longer need access through port
5000, so we can remove that rule. We can then allow access to the Nginx server:

You should now be able to go to your server’s domain name or IP address in your web browser. In
this case, by typing: http://ctdcheck.ieo.es

You should see your application’s output:

In this final section, we show technical issues about a specific and more complex app.

It's time to upload to the server our real code and test the app. The code of IEO CTD Checker can
be found here: https://github.com/PabloOtero/CTDChecker

This app needs an updated file containing the list of Cruise Summary. This file is mantained by
our colleagues of BSH: http://seadata.bsh.de/isoCodelists/sdnCodelists/csrCodeList.xml

The easiest way to download the file everyday at midnight and detele the previous file is create a
task in the crontab:

crontab -e

sudo ufw delete allow 5000sudo ufw allow 'Nginx Full'

Create a more compex Python
Flask app: the real case of IEO
CTD Checker

https://github.com/PabloOtero/CDI-to-GeoNetwork

And type inside:

0 0 * * * cd /home/myuser/ctdcheck && wget -N

http://seadata.bsh.de/isoCodelists/sdnCodelists/csrCodeList.xml

Revision #11
Created Fri, Feb 14, 2020 12:17 PM by Pablo
Updated Thu, Sep 17, 2020 6:47 AM by Pablo

http://seadata.bsh.de/isoCodelists/sdnCodelists/csrCodeList.xml
http://wiki.ieo.es/user/14
http://wiki.ieo.es/user/14

